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ANALYSIS OF SENSOR RESOURCES DEPLOYMENT
IN AN ESCAPE/EVASION SCENARIO
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NORDA Code 224, Stennis Space Center, Mississippi 39529
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and

Naval Ocean Research & Development Activity, Building 1100,
NORDA Code 224, Stennis Space Center, Mississippi 39529

Abstract. Sensor resources deployment in a two-dimensional geographic grid is
analyzed under the assumptioﬁ that the intruder has perfect knowledge of the
detection capabilities of the deployed sensors and associated systems. This situation
represents a "worst-case” scenario for the sensor system. Dynamic programming
techniques are used to calculate the optimal escape/evasion routes, which are then
displayed as two dimensional path plots. The average instantaneous probabilities of
detection and the cumulative probabilities of detection along possible paths are
represented by computer-generated bar charts. Additional statistics concerning

path characteristics are also available. For the purpose of comparing the optimal
other sub-optimal paths, the analyses of coherent linear
and constrained random paths are also available. Other

escape/evasion paths with
paths, random linear paths
uses for the model are also discussed.

Keywords, Dynamic programming; probability of detection; sensor deployment.

INTRODUCTION

Consider the deployment of stationary sensor
resources in a two-dimensional geographic grid by
a defensive (fixed position) force in response to a
possible escaping/evading (mobile) force. These
sensors may be land-based, water-based or even
satellite-based. The term sensor is used to
represent a wide variety of devices and device
types, ranging from simple detection devices to
such devices as land mines that are designed to
destroy the mobile force. For each point on the
grid we associate a probability of detection. For a
mine field we would discuss a probability of
detonation, as opposed to a probability of detection
and would generate a probability of detonation grid
instead of a probability of detection grid. For
simplicity we will limit this discussion to
terminology dealing with detection. The analysis
of the probability of detection grid yields a
measure of overall effectiveness for the sensor
system.
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A typical analysis of a two-dimensional geographic’
probability of detection grid may involve viewing

the problem as a finite set of possible paths through °
the grid. Each path would have to be evaluated to
generate & measure of effectiveness for the sensor .
field. However, as the sensor grid grows linearly
in size, the number of possible paths to be examined

may grow at a combinatorial rate, making this

method impractical. For this reason the analysis

more commonly involves some type of

probabilistic averaging scheme over paths through'
the field, or within subregions of the field itself.

Arcas may be generated around the sensor field,

where the average probability of detection inside is

above some specified value. Or the analysis may

involve generating some type of random path’
through the field and providing statistics about’
large numbers of those paths.
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For this study we will examine a 400 X 400

probability of detection grid (see Figure 1), with an

% intruder attempting to transverse the field from
¥ West to East subject to the restriction that the ficld
2 is to be crossed by a 399 step path where the
>, direction moved at each step is either NE, E, or SE
. and such that all steps are restricted to the grid.
3 The code bar at the bottom of the plot indicates the
" value of the instantaneous probabilities of detection
- at each of the points on the grid. This probability
- of detection grid was generated by a dynamic

simulation program for synthetic sensor coverage
patterns, using a logarithmic decay function. In the
sample grid, it is apparent that there are five
sensors. They are located where the value of
probability of detection is high surrounded by
concentric circles of rapidly decreasing value.

FIG. 1. Sample Grid

-THREE PROBABLISTIC MEASURES OF
EFFECTIVENESS

The "best-case” scenario for the sensor field is that
the one making the transit has no knowledge of the
sensor field, and thus, transits the sensor field in a
non-evasive manner. The most non-evasive
manner to transit a sensor field is in a straight line.
Two types of linear paths can be defined : coherent
linear and random linear, A constrained random
walk represents a family of paths which are not
subject to the straight line restriction.

Coherent linear paths are defined as those paths
which correspond to a horizontal row in the
probability of detection grid. Random linear paths
are defined as straight line paths made by the
generation of two random numbers representing

the end points of a line. One of the numbers is used
as the starting row in column one of the input
probability of detection grid, and the other is the
ending row in the last column of the grid.

In Figure 2, the results of coherent linear transit
through the grid is reported in terms of the average
probability of detection along the path. The legend
reports the number of paths analyzed (400), the
number of bins used in the distribution (10), the
mean and median, and the maximum and minimum
values encountered. The mean of 0.186 and the
median of 0.198 are also represented on the bar

~

chart. .

FIG. 2. Coherent Linear E/W Paths
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Linear random transversals are approximated by a
series of NE, E and SE movements supported by
the model. The analysis of 1000 randomly selected
paths is given in Figure 3.

FIG. 3. Linear Random E/W Paths
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The sample grid appears to be a marginal sensor
placement with a mean and median of 0.206 and
0.212 respectively. Again, the analysis is done
using average probability of detection. Even
though the linear random analysis tends to give
emphasis to sensors placed at the center of the grid,
the results very nearly mimic the coherent linear
analysis.

Figure 4 yields the results of one thousand
constrained random walks through the grid. With
a mean of 0.189 and a median of 0.188 the results
are again similar, even though the method gives
emphasis to detection probabilities found in the
"central” rows. The paths were generated by
selecting with equal probability, at each stage in the
development of the path, the next direction of
travel from the three directions (two if on top or
bottom row of grid) supported by the model.

FIG. 4. Constrained Random Walk
E/W Tracks
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These three probabilistic measures of the sensor
fields' detection capabilities yield approximately
the same results. While this is comforting, it may
also lead to false conclusions about the strength of
the field if the assumption that the intruder has no
knowledge of the field is violated.

WORST-CASE ANALYSIS

Now consider a situation where the intruder has
knowledge of the sensor field capabilities. Clearly,
an intruder with information conceming sensor
deployment should be more effective in crossing
the grid than an intruder that has none. In these
instances, the "worst-case” scenario analysis is
required. Consider the possibility that the intruder
has perfect knowledge of the detection capabilities
of the deployed sensors and associated systems. In
this situation, the probabilistic analysis methods
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previously described will yield values that
significantly overestimate the probability of
detection.

This "worst-case” scenario analysis can be
evaluated by dynamic programming techniques,
The methodology of dynamic programming can be
used to generate, display, and analyze the optimal
escape/evasion routes. This dynamic programming
methodology has been successfully used by others
to determine optimal shipping routes and to
establish oil transport pipeline placement. Low-
cost shipping routes and strategies for minimizing
the cost of shipping oil through pipeline networks
are analogous to low probability of detection routes
through a sensor field. .

Thus, a measure of sensor field effectiveness
against not only an intruder who has stumbled into
the sensor field, but also against an intruder with
perfect knowledge of the detection capabilities of

R L./ ) )

the sensor system is provided. In addition, the .. ..
same approach can be used to provide a way to &
determine how much damage would be done in the -

event of disclosure of various details concerning s

the sensor field.
OPTIMAL PATH ANALYSIS

The grid illustrated in Figure 1 was analyzed using
the methodology of dynamic programming in " -

order to determine the west-to-cast path or paths .-

through the grid that yield the lowest possible -
probability of detection. The results shown in . |

Figure 5 indicate that multiple optimal paths lic

above the sensors. Once determined, the optimal ,. .

paths seem sensible: avoid the areas qf kS
concentrated sensors. 3

FIG. 5. Optimal Paths
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FIG. 6. Optimal Paths From All Possible
Start Locations
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Analysis of a cost grid using dynamic
programming can generate optimal paths from any
specified start location. In Figure 6, the optimal
paths from all possible start locations are shown.
Intuitively, one would avoid the center of the
sensor field, and this is borne out by the plot. Note
that although there are many possible start
locations, optimally they merge into two distinct
paths. These paths may indicate possible choke
points to sensor placement personnel and are a
valuable result of the analysis. These results were
analyzed in the same fashion as the three previously
described probabilistic methods and are given in
Figure 7. If the average probability of detection
along the path is an accurate estimate of the sensor
field performance, the prospects of detecting a
knowledgeable, intelligent transit through the
sample grid are dismal. With a maximum average
probability of detection of 0.028 and a mean of

FIG. 7. Optimal E/W Tracks
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0.022, crossing the grid safely is not difficult. A
comparison of Figures 2 and 7 yields a vivid
reminder of the value of information conceming
the fields' detection capabilities.

The grid was analyzed again with an additional
restriction. Initial runs indicated that the optimal
paths skirted the edges of the plots, avoiding the
areas of concentrated sensors. Consequently, the
analysis was restricted to minimum and maximum
sensor field rows. This forced traversal through
the center of the sensor field to a higher degree
than was evident in either the linear random or
constrained random methods reported in Figures 3
and 4, respectively. Results are shown in Figure 8.
The artificial boundaries are shown as dotted
horizontal lines. The optimal paths, no longer
allowed to skirt the edges of the sensor field, go
carefully between the sensors, as one might expect.

FIG. 8. Optimal Paths Through Moderately
Restricted Sample Grid
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FIG. 9. Coherent Linear E/W Tracks
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If a different measure of effectiveness along the
path is used (in this case, the cumulative probability
of detection), then the results are somewhat
different. As can be seen in Figure 9, coherent
linear traversal results in almost certain detection,
as does linear random traversal (Figure 10) and
constrained random (Figure 11).

FIG. 10. Linear Random E/W Tracks
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FIG. 11 Constrained Random Walk
E/W Tracks
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The data presented in Figure 12 for the cumulative
probability of detection for optimal traversals paint
a different picture. If the cumulative probability of
detection along the path is an accurate estimate of
the sensor field performance, the prospects of
detecting a knowledgeable, intelligent transit are
affected dramatically. The analysis indicates that
the minimum cumulative probability of detection is
a low 0.268 value and the mean is a marginal 0.374
value. Thus, crossing the grid safely with full
knowledge of the sensor field has become very
probable.

FIG. 12. Optimal E/W Tracks ..
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CONCLUSIONS

Analysis of a probability of detection grid yields a

-, 5 EEN AT

’

ks

measure of effectiveness for the overall sensor -
system. A typical analysis of a two-dimensional . -

geographic probability of detection grid may
involve one of a number of the more commonly
used probabilistic-type averaging schemes over
paths through the field.

However, these probabilistic methods may not be
acceptable for those sensor systems where a
measure of effectiveness other than average or
random is required. If the intruder has partial or’
complete knowledge of a sensor system, then

analysis of the “worst-case™ scenario may be. -
required. The "worst-case” scenario analysis can,

be done using dynamic programming techniques..
The methodology of dynamic programming can be
used to generate, display, and analyze optimal
escape/evasion routes.

Thus, a measure of sensor field effectiveness
against not only an intruder who has stumbled into
the sensor field, but also against an intruder with
knowledge of the detection capabilities of the
sensor system is provided.

A comparative study of a single probability of
detection field grid has been made using not only
optimal path analysis, but also other suboptimal
techniques. The results indicate that simpler
methods of analysis may not be indicative of
overall sensor field performance. Additionally,
the optimal path dependence on the sensor
placement is made evident, further indicating the
usefulness of the dynamic programming technique
to sensor placement/deployment analysis.
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